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A Monte Carlo simulation of the equilibria of a three-dimensional gas of vortex loops is conducted. Lines of
vorticity are expressed as closed self-avoiding walks on a lattice. Vortices interact at low temperatures through
a Biot-Savart potential arising through the Villian approximation of theXY action. The vortex model at infinite
temperature is also related to Symanzik’s random-loop expansion of the criticalXY model. The low-
temperature state of the model simulates thermally excited vorticity in superfluid helium. The high temperature
state of the vortex gas has application to classical turbulence. A grand-canonical ensemble is simulated, in
which chemical potential is a parameter related to the self-energy per unit length of a vortex line. Two phases
are identified in the temperature–chemical potential plane; the phases are separated by a transition line analo-
gous to thel transition of superfluid helium. The transition line is also a percolation threshold; all vortex loops
are of finite size in the cold phase, while an infinite vortex loop exists in the hot phase. The percolation
transition driven by chemical potential persists to infinite temperature. At the infinite temperature ‘‘polymeric’’
state the Biot-Savart interaction vanishes and the behavior of the system is determined only by the density of
vortices and geometric constraints.@S1063-651X~96!08206-2#

PACS number~s!: 47.32.Cc, 64.60.Cn, 67.40.Vs, 05.50.1q

I. INTRODUCTION

The relationship in fluid dynamics between small-scale
motions and bulk flow properties is of great scientific and
practical interest. Microscopic vortices dissipate energy in
superfluid helium@1–3#, and a gas of thermally excited vor-
tices is identified with the ‘‘normal component’’ of liquid
helium below thel temperature. Vortex structure also plays
a role in models of turbulence in classical fluids@4–6#.

While the dynamics of superfluid and of turbulent flows
are exceedingly complex, the small space and time scales are
assumed to be universal. These scales should be described by
a measure that is approximately invariant under the dynam-
ics @7#. While little is rigorously known of the measure for
classical turbulence, thermodynamic equilibria in vorticity
variables@8–11# have been proposed as candidate measures.

In superfluid turbulence, quantized vorticity can interact
with boundaries and with other excitations in such a way as
to reach an equilibrium state. Proliferating vortex tangles are
believed to play a role in disordering the condensate in su-
perfluids @12# and superconductors@13#. Models of vortex
equilibria give rise to theories of the heliuml transition
@14–16#.

While two-dimensional vortex models of superfluid he-
lium are well described by the Kosterlitz-Thouless theory
@17–19#, the vortex structure in the three-dimensional mod-
els is not fully understood. The geometry of vortex lines in
three dimensions affects both the energy and the entropy of
the system. Large-scale vortices have been conjectured to
resemble self-avoiding walks@14# at thel transition. Studies
also indicate that the connectivity of vortices influences the
thermodynamics@20# of the system.

A complete vortex theory of thel transition should be
consistent with the behavior of the three-dimensionalXY

model at the ordering transition. Critical exponents derived
for vortex models can be compared with those of theXY
model to investigate the validity of theories. The exponents
for the XY model are available to high accuracy frome
expansion techniques, and are in good agreement with super-
fluid experiment@21#.

The energy of anXY spin configuration can be expressed
through a low-temperature approximation@22,23# as a spin-
wave term plus a vortex term arising from topological de-
fects in the spin field. Monte Carlo simulations of the three-
dimensionalXY model resolving topological defects in the
spin field @24,25# demonstrate that vortex excitations prolif-
erate with increasing temperature and are necessary to disor-
der the system. Suggestions about a general treatment of
XY vortices are given in@26#.

Vorticity based theories of the ordering transition simplify
vortex-vortex interaction energies and neglect spin waves. A
computational simulation that employs these approximations
provides a comparison with the spin-defect calculations.
Vorticity simulation can thus be used to validate vortex equi-
librium models of thel transition. A complete equilibrium
theory could then be extended to nonequilibrium problems of
superfluid flow. Vortex statistics also play a central role in
flux-line modeling of superconductors@27,28#. Aspects of
superfluid vorticity simulation could also be employed in
superconductor simulation.

This paper presents the results of a simulation of a gas of
vortices in which vortex lines are the primitive variables
rather than the defects of a spin field. A phase transition is
identified in which the energy remains finite but the specific
heat diverges or has a cusp. The transition is shown to be a
percolation threshold; while the vortex line density is con-
tinuous across the transition, the probability of an infinite
vortex loop forming in the system is zero in the cold phase
and one in the hot phase.

The phase transition as a function of chemical potential
extends to infinite temperature, where the vortex-vortex in-*Electronic address: akao@math.ias.edu
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teraction terms vanish. This polymeric limit of the vortex gas
model can be related to theXY model through a formalism
entirely different from the spin-defect view. The Symanzik
loop expansion of theXY partition function expresses con-
figurations in terms of collections of directed loops@29–31#.
A chemical potential related to the spin-spin coupling con-
trols the loop activity and there is no long-range interaction.
The Symanzik loops can intersect, but repeated visits to a
lattice site are suppressed. The polymeric limit of the vortex
model is an approximation of the Symanzik model in which
loop intersections are fully suppressed. It is believed that the
critical behavior of single self-repelling loops is identical to
that of single self-avoiding loops@32#. If penalized loop in-
tersections are likewise irrelevant in the Symanzik form of
the XY model, so that the polymeric vortex transition is in
the same universality class as theXY ordering transition,
then the long-range Biot-Savart interactions among vortices
are also irrelevant at criticality.

The analysis of the polymeric model may be much sim-
pler than theories of interacting vortices. Models of nonin-
teracting vortex systems governed by a chemical potential
@33,34# have been treated with transfer matrix and percola-
tion theoretical techniques. Such techniques may be effective
for the polymeric model of self-avoiding vortices also.

II. SELF-AVOIDING-LOOPS MODEL

Individual vortices are oriented bonds on a periodic cubic
lattice. Thei th vortex has centerxW i and directionjW i5GhêW
whereG is a fixed circulation,h is the lattice step size, and
êW is a unit vector in one of six signed coordinate directions.
See Fig. 1. LetL be the length of the cube, so a period
contains (L/h)3 sites. The present paper considers unit steps
h51.

The energy of a configuration ofN such vortices is given
by

E5nN1F12 (
i51

N

(
jÞ i

jW i•jW jG~xW i2xW j !G ,
whereG(rW) is the Green function for the Laplacian on the
periodic cube. In free space,G(rW)51/4pr . The energy con-
sists of a long-range vortex-vortex interaction term and a
self-energy term, wheren is the self-energy of a vortex line
of lengthh. The energy is a discretization of the Lamb inte-
gral for the kinetic energy of a smooth incompressible flow

with vorticity jW5“3uW , whereuW is the fluid velocity@35#, or
equivalently, of the Biot-Savart energy of an electric current
densityjW :

E5
1

2E dxWE dxW8jW~xW !•jW~xW8!G~xW2xW8!.

The circulationG is set equal to 1 in the model studied here,
while the parametern controls the vortex fugacity.

Vorticity configurations must be divergence free; at each
lattice site the number of vortex bonds directed into the site
must be equal to the number of vortex bonds directed out of
the site. Vortex bonds therefore form collections of directed
chains, which close into loops or extend to infinity.

In the model studied here, an additional constraint of self-
avoidance is imposed so that each lattice site may have no
more than one entering bond and one exiting bond. Forbid-
ding multiple bond occupation imposes a cutoff on circula-
tion density. Imposing the stronger constraint of self-
avoidance should not change the large-scale physics, but has
computational and formulational advantages. Configurations
of self-avoiding chains of bonds are unambiguously parti-
tioned into collections of separate directed self-avoiding
walks. On the periodic lattice, each walk is closed and will
henceforth be referred to as a vortex loop. Figure 2 shows
four vortex loops in a periodic planar lattice.

Vortex configurations on the periodic lattice are taken to
be neutral,

(
i51

N

jW i50W ,

so that the energy per unit volume is finite. The configura-
tions correspond then to the vorticity of a periodic flow or to
vortex defects in a periodicXY spin system.

FIG. 1. Two vortex bonds with centersxW i andxW j . The directions

jW i andjW j are perpendicular.

FIG. 2. Four schematic vortex loops in a periodic domain of
lengthL58. LoopsC andD span the domain.
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The configurations included in the thermodynamic en-
semble comprise all arrangements of vortex bonds satisfying
the aforementioned constraints of connectivity, self-
avoidance, and neutrality. No constraint is imposed on the
number of vortex links, on their distribution into loops, or on
the topology of individual loops. DefineV2

SA as the set of
such loop configurations. Thermodynamic studies in which
vortices remain connected into a single loop have been per-
formed previously@8#.

The Gibbs weight in the grand-canonical ensemble is

e2bE5expH 2bnN2bF12 (
i51

N

(
jÞ i

jW i•jW jG~xW i2xW j !G J .
The principal thermodynamic quantities are the equilibrium
energy per unit volumeE/V, and the vortex line density
Nh/V. The thermodynamic parameters are the inverse tem-
peratureb and the vortex self-energyn. To better relate the
simulation to otherXY representations, define a vortex ac-
tivity parameter

s5bn

and an interaction energy

Eint5
1

2 (
i51

N

(
jÞ i

jW i•jW jG~xW i2xW j !.

The partition function inb ands is thus

Z5(
V2
SA
e2bE5(

V2
SA
exp~2sN2bEint!.

A prime motivation for simulation in vorticity variables is
to collect geometric information. Define the extent of a vor-
tex loop containingn bonds in the periodic domain as the
side length of the smallest cube required to containn con-
secutive steps along the loop. In Fig. 2, loop A fits in a
231(31) box, while loop B fits in a 232(31) box. Both
loops A and B thus have extent 2. Loop C has 12 bonds in
the domain; following it for 12 steps traces an unclosed walk
fitting in an 832(31) box. Both loops C and D have extent
8. The equilibrium probabilityp(n,s) of a bond being part of
a loop ofn bonds and extents contains information on the
geometry of vortices. One can also draw a parallel with per-
colation: defineP as the probability of a configuration con-
taining at least one loop with extent equal to or greater than
the length of the domain. This is the analogue of the prob-
ability in percolation theory of an occupied cluster spanning
the domain.

III. RELATION TO THE XY MODEL

The ordering transition of theXY model simulates the
heliuml transition. TheXY model is therefore an appropri-
ate reference system for the vortex model. The self-avoiding-
loops model is related to the three-dimensionalXY model
both through a vortex-defect picture and through the Syman-
zik loop expansion. Consider theXY partition function for a
ferromagnetic couplingK:

ZXY5(
$SW %

expSK(
^ i , j &

SW i•SW j D .
Kohring and Shrock@36,24# counted the topological defects
in the spin field to obtain the number of vortex bondsN in a
configuration. The vortex loops obtained by this process are
not self-avoiding, but no two loops can share a bond~except
for a set of measure zero!. The vortex activity is offset in the
Shrock model by a parameterl:

ZKS5(
$SW %

expSK(
^ i , j &

SW i•SW j2lND .
The Villian approximation can be used to decompose the
spin energy into spin-wave and vortex terms:

2 (
^ i , j &nn

SW i•SW j'Espin wave1c1N1c2E
int,

where c1 and c2 are positive constants. The self-avoiding
loops model follows from the Shrock model by employing
the approximation, discarding the spin-wave term, and re-
placing bond-avoiding vortex configurations with self-
avoiding vortices. A change of variablesK5b/c2 and
l5s2c1b/c2 then gives the self-avoiding-loops partition
function:

ZSAL5(
V2
SA
exp~2sN2bEint!.

Settingb50 to drop the interaction energy term gives the
polymeric limit of the self-avoiding-loops model. The poly-
meric limit can also be related to theXY model through the
Symanzik loop expansion@29–31#. Consider configurations
that consist of sets of closed, oriented, nearest-neighbor
walks on the lattice. The walks need not be self-avoiding; for
each lattice sitei , denote the number of times any walk visits
the site byt i . Thus( it i is the total number of steps taken
by all the walks in the configuration. DefineV2 to be the set
of all such configurations. TheXY model may be expressed
as a gas of walks interacting only through a self-repelling
contact interaction:

ZXY5(
V2

expS 2s*(
i

t i2(
i
W~t i ! D ,

wheres*52 ln(K), and whereW(t) is a weight function
with W(0)5W(1)50 andW(t);t lnt.

The weight function discourages multiple visits at any
lattice site. If multiple visits are entirely forbidden,
W(t>2)5`, then the configuration space is restricted to
self-avoiding collections of walks. Steps can then be inter-
preted as ‘‘vortices’’ with( it i5N. This restriction leads to
the polymeric limit of the self-avoiding loops model, after
formal substitution ofs for s* :

ZP5(
V2
SA
exp~2sN!.
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Note that while the polymeric limit of the vortex model and
the self-avoiding restriction of the Symanzik model have the
same form, the former is a low-temperature approximation
while the latter is a high-temperature expansion. As the fer-
romagnetic couplingK increases, loop activity decreases in
the vortex model while loop activity increases in the Syman-
zik model. The polymeric limit at criticality is thus in an
approximate sense a self-dual representation of the three-
dimensionalXY model.

IV. SIMULATION OF SELF-AVOIDING LOOPS

The equilibria of the system are explored with a grand-
canonical Monte Carlo simulation. Each configuration is
stored as a collection of closed self-avoiding walks. Madras
and co-workers have developed a set of transformations that
modify the geometry of single self-avoiding walks@37,38#.
These transformations are employed on random loops in the
collection. The single-loop geometric updates are supple-
mented with transformations that change the loop connectiv-
ity: joining two separate loops or breaking a single loop
apart. Transformations are also employed to add or delete
vortex bonds from the configuration. Metropolis-type rejec-
tion is used to enforce the Gibbs weight.

The direct simulation of interacting vortices is for several
reasons less efficient than simulation of spins. The first draw-
back is that a complex set of transformations and data struc-
tures is required to operate on the configurations in such a
way as to preserve the constraints. A second drawback is that
the computation of the energy requires on the order ofN2

operations for a configuration ofN vortices. The computa-
tional effort in computing the energy thus scales with the
square of the volume of the system, or with the sixth power
of the length of the system. The increase of autocorrelation
times with the system size compounds the problem. For
these reasons only relatively small systems are simulated.
Most of the data are taken for domains of length 4, 6, and 8.
Spot checks are conducted on domains of length 16. The data
are thus suitable for determining the overall thermodynamic
behavior of the system, but are not accurate enough for the
computation of critical exponents. Such values may be better
obtained by analytical means.

Thermodynamic data are computed with the histogram
method of Ferrenberg and Swendsen@39#. The histograms
are taken in bins over the interaction energyEint, the number
of vortex bondsN, and the existence of a loop spanning the
domain. Histogram merger and histogram shifting techniques
allow the thermodynamic observables to be computed as
functions of the parametersb ands. Loop geometry infor-
mationp(n,s) is collected without histograms.

The use of the histogram methods makes an estimate of
the statistical error very complicated. Each point of a graph
is computed with data from several runs taken at different
parameter values, which thus have different autocorrelation
times. Errors are subjectively controlled by taking data until
the histograms become fairly smooth, and by determining the
effect of adding more data in batches. The alignment of ther-
modynamic features in theb,s plane for different system
sizes is taken as an indication that statistical errors are not
excessive.

The Monte Carlo algorithm is fully described in@40,41#.

V. SIMULATION RESULTS

Figure 3 shows a collection of vortex loops on a periodic
lattice of side length 16. Loops containing few bonds are
more common than loops containing many bonds, and large
loops typically have a complex, tangled structure.

The simulation identifies a percolation threshold in the
b, s plane. In the region identified as phase II, the cold
phase, in Fig. 4 there are no vortex loops of infinite extent in
an infinite system. In the region identified as phase I, the hot
phase, there is almost certainly an infinite vortex loop in an
infinite system. The dotted line indicates the location of a

FIG. 3. Example vortex configuration containing 76 loops from
simulation atL516. A single period of the domain is shown.

FIG. 4. Phase plane in (b,s). The solid line marks the transi-
tion between phase II, the ‘‘superfluid’’ phase, and phase I, the
‘‘normal’’ phase. The dashed line through the transition is the curve
of constant vortex self-energyn50.25. Error bars are drawn at
arbitrary locations on the transition curve.
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slice of constant vortex self-energyn50.25.
The location of the threshold is identified by the finite size

scaling of the probabilityP of the existence of a vortex loop
spanning the system. Figure 5 shows a slice through the
threshold atn50.25. For values of the inverse temperature
b less than the critical temperature marked with a dotted
line, the percolation probability increases as the system size
increases. For values ofb greater than the critical value, the
probability decreases as the system size increases. This finite
size scaling indicates the presence of a percolation threshold
@42#: on one side of the threshold an infinite vortex exists
with probability one in an infinite system, while on the other
side there is almost certainly no infinite vortex. This behav-
ior supports the conjecture, of Feynman and Onsager@12#,
that an infinite tangle of thermally excited vorticity appears
at thel transition. The subjective error bars in Fig. 4 are
based primarily on the agreement of the crossing points of
the percolation curves for the three system sizes.

The finite size scaling of the thermodynamic quantities
indicates the presence of a phase transition coincident with
the percolation threshold. Figure 6 shows the specific heat

C5
2b2

V

]E

]b

in relation to the threshold temperature marked with the dot-
ted line. The height of the peak increases with the system
size, indicating a divergence or a cusp in the thermodynamic
limit. The value of the energy,

E5nN1Eint,

shown in Fig. 7, shows no dependence on the system size,
indicating that the energy is continuous at the transition
point. This thermodynamic behavior is compatible with the
l transition.

Statistical error is evident in the specific heat curve for the
largest system,L58, but it retains the highest peak all along
the transition line. The percolation threshold is shown along

with the location of theL56 specific heat peak in Fig. 8.
The subjective error bars are based on the spread of the peak
locations and incorporate both statistical error and finite size
shifting.

The appearance of an infinite loop at the transition is a
true percolation phenomenon, and is not due to any jump in
the density of vortex bonds. See Fig. 9. The threshold occurs
at a fixed density, which varies from approximately
D50.15 atb50 to D50.4 atb515.

The simulation data can be further compared to percola-
tion problems by examining the analogue of cluster numbers.
Figure 10 plots the probabilityp(n) of a bond being part of

FIG. 5. ProbabilityP that a loop spanning the domain exists at
inverse temperatureb and fixed loop self-energyn50.25. Solid
curves are data for system sizesL54, L56, andL58. The thresh-
old locationbc(n50.25)55.74 is marked with a dotted line.

FIG. 6. Specific heat at inverse temperatureb and fixed loop
self-energyn50.25. Solid curves are data for system sizesL54, 6,
and 8. The threshold locationbc(n50.25)55.74 is marked with a
dotted line.

FIG. 7. Total energyEint1nN per lattice site at inverse tempera-
tureb and fixed loop self-energyn50.25. Solid curves are data for
system sizesL54, 6, and 8. The threshold locationbc(n50.25)
55.74 is marked with a dotted line. System size dependence is not
significant.
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a loop ofn bonds. The graphs are normalized by the prob-
ability p(4) of a bond being contained in a loop of the small-
est size. LineA is from the cold phase, lineB is at criticality,
and lineC is above criticality at infinite temperature. The
probabilities appear to have an exponential decay inn in the
cold phase, while the decay seems to follow a power law at
and above the transition at which a loop spanning the domain
appears. A fit to linesB-D for n<60 gives the scaling

p~n!}n21.760.1.

The first three lines are taken at system sizeL58, while line
D is at criticality forL516. TheL516 data indicate that the
final dropoff at largen is due to finite size effects. The data
confirm the overall behavior of the populations of loops of
XY vortex defects in the study by Epiney@25#.

VI. DISCUSSION AND CONCLUSIONS

The simulation of the vortex system indicates the exist-
ence of al-like phase transition in a model with a simplified
vorticity based Hamiltonian. The transition is furthermore
shown to coincide with a percolation threshold for vortex
loops. The threshold extends to infinite temperature, where
the vortex-vortex interactions vanish and the model becomes
a gas of oriented polymers.

Two mechanisms may contribute to the nonanalyticity of
the energyE5sN1Eint at the threshold. The first is inde-
pendent of the interaction energy and is due to nonanalyticity
of the vortex bond density across the percolation threshold.
Such behavior is not present in independent bond percola-
tion, but arises from the effects of connectivity and self-
avoidance constraints on configurations inV2

SA. Non-
analyticity in a vortex system with geometric constraints also
exists in models studied by King and co-workers@33,34#.

A second mechanism depends on the interaction energy,
and is due to the possible appearance of long-range order in
the vortex bond directions at the percolation threshold.
Above the transition temperature, a nonzero fraction of
bonds are contained in infinite self-avoiding walks. Single
oriented self-avoiding walks have been shown to have
vector-vector correlations with power-law decay@43#. It is
conceivable that while bond directions in separate vortex
loops of finite extent become exponentially decorrelated at
distances much larger than the loop size, bond directions in
infinite loops may have power-law correlations. One should
note, however, that the presence of a gas of loops may
change the statistics of the infinite walks. de Gennes has
conjectured that a self-avoiding walk in a gas of other walks

FIG. 8. Locations of the percolation threshold and the peak of
the specific heat in the (b,s) plane. The solid line is the percolation
threshold and the dashed line is the peak location of the specific
heat atL56. The lines separate the ‘‘superfluid’’ phase, phase II,
from the ‘‘normal’’ phase, phase I. Arbitrarily placed error bars
indicate both statistical and finite size uncertainties in the transition
location.

FIG. 9. Number of vortex bondsN per lattice site at inverse
temperatureb and fixed loop self-energyn50.25. Solid curves are
data for system sizesL54, 6, and 8. The threshold location
bc(n50.25)55.74 is marked with a dotted line. System size de-
pendence is not significant.

FIG. 10. Loop populationsp(n)/p(4) by number of bondsn.
The probability that a bond is part of a loop ofn bonds isp(n). The
smallest loops haven54. Solid linesA, B, andC are from system
size L58 and represent the cold phase, criticality, and the hot
phase, respectively. Dashed lineD is at criticality for L516 and
delineates a dropoff due to finite size effects.
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behaves like the simple random walk@44#. Polarization ef-
fects between loops of different scale may also need to be
taken into account.

The phase diagram of the self-avoiding loops model is
consistent with the equivalent portion of the ordering transi-
tion in the Shrock extension of theXY model. The infinite
temperature transition point in the vortex system atsc'1.4
is not the same as the infinite temperature transition point in
the spin system atlc'0.55, but the replacement of bond-
avoiding vortices with fully self-avoiding vortices is ex-
pected to change the transition location. A calculation of
critical exponents is required to verify that the self-avoiding
loop and theXY vortex models lie in the same universality
class.

This simulation is not accurate enough for direct compu-
tation of critical exponents, but the results may be applied to
vortex theories in a number of ways. A percolation theoreti-
cal analysis could give exponents for the entropy driven ac-
tivity of finite size loops and for the strength of the percolat-
ing loop near the transition. The observed scaling ofp(n)
could be used to aid the analysis. These exponents could be
combined with an ansatz for the interaction energy of loops
of a given scale@16# to compute exponents for the vortex
system.

The existence of long-range ordering of vortex bonds at
the transition remains an open question. If vortices do not
order, the speculation that the polymeric model and theXY
model lie in the same universality class would be supported.
Such a result could also lead to verification thatf4 and
N-vector models lie in the same universality class@45#. Even
if long-range interactions are relevant at criticality, the poly-
meric model may serve as a base for an expansion viewing
the interaction energy coefficient as a small parameter. One
would ultimately expect, however, that long-range interac-
tions remain important for understanding dynamic problems
of superfluid flow away from thel transition.
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